ラグランジュ点近傍における小ハロー軌道の生成

2010SE072 伊藤凌平 2010SE105 小出和直 2010SE122 宮沢龍太郎

指導教員:市川朗

1 はじめに

人工衛星は通信や測位などに利用されており、我々の生 活に不可欠である.近年では惑星の観測技術においての大 きな進展をみせている.人工衛星は与えられたミッション によってさまざまな軌道を採用しており、用途に応じて適 切な軌道を設計することが観測精度や燃費の向上につなが る. ここで月面観測について考える. 月の自転周期は地球 の周囲を回る公転周期と同期しているため、月は地球に対 して常に同じ面を向けている.したがって、月の裏側は地 球から観測することが出来ない. この問題に対し、本研究 では月の裏側を宇宙機によって効率的に観測することを可 能とする小ハロー軌道をラグランジュ点近傍に生成する. ラグランジュ点とは、質量差のある二つの天体が共通重心 の周りをそれぞれ円軌道を描いて回っているとき、この二 天体に比べて質量が無視できるほど小さな宇宙機をある速 度を与えてこの軌道面内に置くと,最初の二天体との相対 位置を変えずに回り続けることができる位置のことであ り、五つの点が存在する. ラグランジュ点では二天体が作 る重力場が遠心力と釣り合っているため宇宙機は二天体に 対して相対的に不動のままでいることができる.本研究に おいては、地球-月系のラグランジュ点のうち、地球から見 て月の裏側に位置する L2点 近傍で小ハロー軌道を生成す る. ハロー軌道とは、ラグランジュ点の周りを周回する周 期軌道である.ここでは、二天体の重力と宇宙機の向心加 速度が複雑に関係した三体問題において実現されるもので あり、宇宙機の運動方程式を L₂ 点近傍で線形化すること により小ハロー軌道を生成する.また、宇宙機をL2点から 小ハロー軌道へ移行し、維持するために、最適レギュレータ を用いて状態フィードバックを設計する. この状態フィー ドバック制御の性能は制御に必要な総速度変化(ノルム) により評価する.

2 軌道方程式の導出

2.1 宇宙機の運動方程式

慣性座標系の原点を *O*-{*I*,*J*,*K*} とし、地球と月の制限 三体問題を考える.

慣性座標系における原点 O から地球, 月, 宇宙機の位置 ベクトルをそれぞれ R_e , R_M , R_m とする. ここで, M_e , M, m はそれぞれ地球, 月, 宇宙機の質量であり, G は万 有引力定数で月と地球の重心を原点とする回転座標系の原 点を $o_b - \{i_b, j_b, k_b\}$ とする. また, r_e とr はそれぞれ地 球, 月から宇宙機への位置ベクトルであり, $D=R_M-R_e$, $D=|D|, r_e=|r_e|, r=|r|$ である. このとき地球と月の運動 方程式は.

$$\ddot{m{R}}_e = rac{GM}{D^3}m{D} + rac{Gm}{r_e^3}m{r}_e,$$
 $\ddot{m{R}}_M = -rac{GM_e}{D^3}m{D} + rac{Gm}{r_s^3}m{r},$

となり,相対ベクトル Dは,

$$\ddot{\boldsymbol{D}} = -\frac{G(M_e + M)}{D^3}\boldsymbol{D} + Gm(\frac{\boldsymbol{r}}{r^3} - \frac{\boldsymbol{r}_e}{r_e^3})$$

を満たす.制限三体問題において, $m \ll M_e$,Mであり,地 球と月の二体問題の方程式は,

$$\ddot{\boldsymbol{D}} = -\frac{\mu}{D^3}\boldsymbol{D},$$

となる. ここで, $\mu = G(M_e + M)$ である. o_b から宇宙機 への位置ベクトルを R とする. このとき, 宇宙機の運動方 程式

$$\ddot{\boldsymbol{R}} = -\frac{GM_e}{r_e^3}\boldsymbol{r}_e - \frac{GM}{r^3}\boldsymbol{r} + \boldsymbol{u}, \qquad (1)$$

が得られる.ここで、*u* は制御加速度である.地球と月の 共通重心のまわりの円運動であると仮定し、パラメータの

$$\begin{split} D_0 &= 384,748 \ [\text{km}] \\ M_e &= 81.3045M \\ \mu_1 &= GM_e = 398,601 \ [\text{km}^3/\text{s}^2] \\ \mu_2 &= GM = 4887 \ [\text{km}^3/\text{s}^2] \\ n &= (\mu/D_0^3)^{1/2} = 2.661699 \ \textbf{x} \ 10^{-6} \ [\text{rad/s}] \\ \rho &= M/(M_e + M) = 0.01215 \\ D_1 &= \rho D_0 = 4674 \ [\text{km}] \\ D_2 &= (1 - \rho) D_0 = 380,073 \ [\text{km}] \end{split}$$

とする. D_0 は、地球の中心から月の中心までの距離であ り、n は円運動の角速度である. ここで、 i_b は地球から見た 月の方向であり、角速度ベクトルは nk_b である.

$$R = Xi_b + Yj_b + Zk_b,$$

$$r_e = D_1i_b + R,$$

$$r = R - D_2i_b,$$
(2)

とすると、(1) 式より、

$$\ddot{\boldsymbol{R}} = \left\{ -\frac{GM_e}{r_e^3} (X + D_1) - \frac{GM}{r^3} (X - D_2) \right\} \boldsymbol{i}_b$$

$$+ \left\{ -\frac{GM_e}{r_e^3} Y - \frac{GM}{r^3} Y \right\} \boldsymbol{j}_b \qquad (3)$$

$$+ \left\{ -\frac{GM_e}{r_e^3} Z - \frac{GM}{r^3} Z \right\} \boldsymbol{k}_b + \boldsymbol{u}$$

が得られる.ここで、 $D_1 \ge D_2$ はそれぞれ重心と地球、月の間の距離である.ここで回転座標系の i_b, j_b, k_b の一階微分は、 $nj_b, -ni_b, 0 \ge$ なり、(2)式のRの二階微分は、

$$\begin{aligned} \ddot{\boldsymbol{R}} = & (\ddot{X} - 2n\dot{Y} - n^2X)\boldsymbol{i}_b \\ &+ (\ddot{Y} + 2n\dot{X} - n^2Y)\boldsymbol{j}_b + \ddot{Z}\boldsymbol{k}_b, \end{aligned} \tag{4}$$

となる.(3) 式と(4) 式の係数比較をすると、

$$\begin{split} \ddot{X} - 2n\dot{Y} - n^{2}X &= -\frac{GM_{e}}{r_{e}^{3}}(X + D_{1}) \\ &- \frac{GM}{r^{3}}(X - D_{2}) + u_{x}, \\ \ddot{Y} + 2n\dot{X} - n^{2}Y &= -\frac{GM_{e}}{r_{e}^{3}}Y - \frac{GM}{r^{3}}Y + u_{y}, \\ \ddot{Z} &= -\frac{GM_{e}}{r_{e}^{3}}Z - \frac{GM}{r^{3}}Z + u_{z}, \end{split}$$
(5)

が得られる.ここでは, r_e , r を,

$$r_e = [(X + D_1)^2 + Y^2 + Z^2]^{1/2},$$

$$r = [(X - D_2)^2 + Y^2 + Z^2]^{1/2},$$

とおく.

2.2 方程式の無次元化

計算を簡単にする為に, $\tau = t/(1/n)$, $\bar{X} = X/D_0$, $\bar{Y} = Y/D_0$, $\bar{Z} = Z/D_0$, $\bar{u}_x = u_x/n^2D_0$, $\bar{u}_y = u_y/n^2D_0$, $\bar{u}_z = u_z/n^2 D_0, \ \bar{r}_e = r_e/D_0, \ \bar{r} = r/D_0$ とし, (5) 式を無次元化する. ' は τ に関しての微分を意味する. (5) 式より,

$$\bar{X}'' - 2\bar{Y}' - \bar{X} = -\frac{1-\rho}{\bar{r_e}^3}(\bar{X}+\rho) - \frac{\rho}{\bar{r}^3}(\bar{X}-1+\rho) + \bar{u}_x,$$
$$\bar{Y}'' + 2\bar{X}' - \bar{Y} = -\frac{1-\rho}{\bar{r_e}^3}\bar{Y} - \frac{\rho}{\bar{r}^3}\bar{Y} + \bar{u}_y,$$
(6)
$$\bar{Z}'' = -\frac{1-\rho}{\bar{r_e}^3}\bar{Z} - \frac{\rho}{\bar{r}^3}\bar{Z} + \bar{u}_z,$$

が得られる.ここで, $\bar{r_e}, \bar{r}$ を

$$\bar{r}_e = [(\bar{X} + \rho)^2 + \bar{Y}^2 + \bar{Z}^2]^{1/2},$$

$$\bar{r} = [(\bar{X} - 1 + \rho)^2 + \bar{Y}^2 + \bar{Z}^2]^{1/2},$$

とおく.

2.3 方程式の線形化

以下では、小ハロー軌道の方程式を導出する.

図2 ラグランジュ点

(6) 式はラグランジュ点と呼ばれる静止点 L_i を持ち,

$$\bar{X} = \frac{1-\rho}{\bar{r_e}^3} (\bar{X}+\rho) + \frac{\rho}{\bar{r}^3} (\bar{X}-1+\rho),
\bar{Y} = \frac{1-\rho}{\bar{r_e}^3} \bar{Y} + \frac{\rho}{\bar{r}^3} \bar{Y},
\bar{Z} = 0,$$
(7)

で与えられる. 月の裏側のラグランジュ点を $L_2 = (l_2(\rho), 0, 0)$ とおく. (7)式は, ρ の値を変えることによって、一般の三体システムの定常点も求められ、地球-月系では ρ =0.01215 であり、 (l_1, l_2, l_3) =(0.83692,1.15568,-1.00506)となる. (6)式を L_2 点周りで 1 次の項までテイラー展開し、線形化した方程式を以下に示す.

$$\bar{X}'' - 2\bar{Y}' - (2\sigma + 1)\bar{X} = \bar{u}_x,
\bar{Y}'' + 2\bar{X}' + (\sigma - 1)\bar{Y} = \bar{u}_y,
\bar{Z}'' + \sigma\bar{Z} = \bar{u}_z,$$
(8)

これを用いて, 小八口ー軌道を生成する. ここで, $\sigma=\rho/(l_2(\rho)-1+\rho)^3+(1-\rho)/(l_2(\rho)+\rho)^3=3.19043$ である.

3 周波数制御

面内運動,面外運動はそれぞれ周期解をもつが,(8)式の 3次元運動の周期解は存在しない.

本研究では常に地球の裏側を安定的に観測するために,解の周波数を面内運動の ω_{xy} 、面外運動の ω_z 、または任意の周波数 ω_{xyz} 、 $\omega = 1, 1/2, 2, 3$ に合わせ、三次元周期解を生成する制御を行う. ここで $\omega_{xyz} = \frac{\omega_{xy} + \omega_z}{2} = 1.8244$ とする. (8)式の状態方程式は、

$$\dot{\boldsymbol{x}} = A\boldsymbol{x} + B\boldsymbol{u}, \boldsymbol{x}(0) = \boldsymbol{x}_{\boldsymbol{0}},$$

である.ここで,

$$\boldsymbol{x} = \begin{bmatrix} \bar{X} & \bar{Y} & \bar{X}' & \bar{Y}' & \bar{Z} & \bar{Z}' \end{bmatrix}^T,$$
$$\boldsymbol{u} = \begin{bmatrix} \bar{u}_x & \bar{u}_y & \bar{u}_z \end{bmatrix}^T,$$

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 2\sigma + 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 - \sigma & -2 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & -\sigma & 0 \end{bmatrix},$$
$$\equiv diag[A_{in}, A_{out}],$$
$$B = \begin{bmatrix} 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix},$$
$$\equiv diag[B_{in}, B_{out}],$$

とする. 面内運動, 面外運動のシステム行列の特性方程 式は,

$$\begin{aligned} |\lambda I - A_{in}| &= \lambda^4 - (\sigma - 2)\lambda^2 - (2\sigma + 1)(\sigma - 1) = 0, \\ |\lambda I - A_{out}| &= \lambda^2 + \sigma = 0, \end{aligned}$$

となる. 面内運動の周波数は解の虚数根である $\omega_{xy} = 1.8627$ であり、面外運動は周波数 $\sqrt{\sigma} = \omega_z = 1.7862$ の正弦波である. 周波数制御をするにあたり、本研究では 7 つの周波数に合わせる制御を行った. ここでは、任意の 周波数 ω での周波数制御を例にあげる. 初めに、(8) 式の 解を、

$$\bar{X}(\tau) = -(\bar{a}/k)\sin\omega_{xy}\tau,
\bar{Y}(\tau) = -\bar{a}\cos\omega_{xy}\tau,
\bar{Z}(\tau) = \bar{a}\sin\omega_{z}\tau,$$
(9)

の形で求めると,

$$k = \frac{\omega^2 + 2\sigma + 1}{2\omega}$$

となる. このとき特殊解は (8) 式の自由運動を満たし, 図 3 のようなリサージュ軌道を形成する.

図3 リサージュ軌道

 \bar{a} =0.0091 のとき,最大の振幅は 3500[km] となり,この 軌道上の宇宙機は地球から観測することができる.なお, (\bar{Y}, \bar{Z}) 運動は,地球からの概観である.周期解を求めるた め,まず面外運動の周波数を面内運動の周波数に合わせる 制御をおこなう.フィードバック制御により,特殊解が (8) 式の第2式を満たすためには,

$$\bar{u}_y = fY$$

$$f = \frac{2\omega}{k} + \sigma - 1 + \omega^2,$$

である.面外運動の周波数を面内運動の周波数に合わせる には、

$$\bar{u}_z = -(\omega^2 - \omega_z^2)\bar{Z},$$

とおく. 以上より,

$$\bar{X}(\tau) = -(\bar{a}/k)\sin\omega\tau,$$

$$\bar{Y}(\tau) = -\bar{a}\cos\omega\tau,$$

$$\bar{Z}(\tau) = \bar{a}\sin\omega\tau,$$

となる.

4.1 最適レギュレータ

(8) 式の状態方程式より,

$$\dot{\boldsymbol{x}} = A\boldsymbol{x} + B\boldsymbol{u}, \boldsymbol{x}(0) = \boldsymbol{x}_0,$$

である. そのときの評価関数は以下に表わす.

$$J(\boldsymbol{u};\boldsymbol{x_0}) = \int_0^\infty [\boldsymbol{x}^T Q \boldsymbol{x} + \boldsymbol{u}^T(t) R \boldsymbol{u}(t)] dt$$

Q は状態にかかる重みであり、 6×6 の半正定対称行列で ある.また、R は入力にかかる重みであり、 3×3 の正定対 称行列である.本研究では Q を固定して考えているため、 評価関数を最小にする u(t) を求める.そのために以下の 代数リッカチ方程式より適切な X を求める.

$$A^T X + XA + Q - XBR^{-1}B^T X = 0,$$

フィードバックゲイン K は上の式より,

$$K = R^{-1}B^T X$$

となる [1].

4.2 誤差方程式

制御軌動を $\dot{x} = Ax + Bu$, 目標軌道を $\dot{x}_f = Ax_f + Bu_f$ とするとき、制御軌道と目標軌道の誤差は、

$$e = x - x_f$$

となり,

$$\dot{\boldsymbol{e}} = A\boldsymbol{x} + B\boldsymbol{u} - A\boldsymbol{x}_{\boldsymbol{f}} - B\boldsymbol{u}_{\boldsymbol{f}}$$
$$= A\boldsymbol{e} + B(\boldsymbol{u} - \boldsymbol{u}_{\boldsymbol{f}}),$$

となる. ここで、フィードバックを $u - u_f = -Ke$ とす ると,

$$\dot{\boldsymbol{e}} = (A - BK)\boldsymbol{e},$$

となる.

4.3 維持制御

御軌道の初期値はそれぞれ,

$$\boldsymbol{x_0} = \begin{bmatrix} 0 & \bar{a} & \bar{a}\omega/k & 0 & 0 & \bar{a}\omega \end{bmatrix}^T$$
$$\boldsymbol{x_{f0}} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T$$

であり、 $Q = 10 \times I_6$ とする. 図 4 は、周波数制御をおこ なった目標軌道であり4周期目までは収束しているが、4 周期目以降で発散していくことが分かった.

図4 小ハロー軌道(4周目以降発散)

目標軌道を維持させるため、4 周期までに目標軌道の値 を初期値にもどす制御を行う必要がある.このときの軌道 のシミュレーション結果を図5に示す.

図5 維持制御

 ω_{xy} での維持制御における R とフィードバックゲイン *K*を以下に示す.

$$R = 10^{14.8750} \times I_3,$$

$$\boldsymbol{K} = \begin{bmatrix} 12.6919 & 7.9990 & 0.0000 \\ -2.3739 & -1.4961 & 0.0000 \\ 3.7120 & 2.3395 & 0.0000 \\ 2.3395 & 1.4744 & 0.0000 \\ 0.0000 & 0.0000 & 3 \times 10^{-15} \\ 0.0000 & 0.0000 & 1.475 \times 10^{-7} \end{bmatrix}^T$$

以下のシミュレーションでの目標軌道(維持軌道)と制 $\omega_{xyz}, \omega_z, \omega = 1/2, 1, 2, 3$ での維持制御における R とフ ィードバックゲインを以下に示す.

$$R = 10^{13.5000} \times I_3,$$

	-10 4407	C F000	0.000-T
	10.4407	0.5802	0.0000
	-1.9528	-1.2307	0.0000
V	3.0536	1.9245	0.0000
$\mathbf{n} =$	1.9245	1.2129	0.0000
	0.0000	0.0000	4.9375
	L 0.0000	0.0000	6.4391

それぞれの周波数におけるノルムのグラフと値を以下に 示す.

図6 維持制御にかかる周波数毎のノルムの比較

表1 それぞれの周波数における最小のノルム

ω	ノルム
xy	5.4585×10^{-3}
z	4.2261×10^{-3}
2	2.2103×10^{-2}
xyz	1.8269×10^{-2}
1	9.0267×10^{-2}
1/2	$2.0996 imes 10^{-1}$
3	6.5837×10^{-2}

図 6 より, 維持制御において r を変化させてもノルムの 変化は極めて微小であることがわかる.また, 維持制御に かかるノルムにおいて ω_z が最小であることが示された.

4.4 移行制御

次に、制御対象を L_2 点から目標軌道へ移行させる制御 を行う. ここでは 7 つの周波数に対して r を変えたときの ノルムと整定時間の比較を行う. ここでは、誤差が 10^{-5} 以 内のとき収束とした. また、今回は整定時間の上限を小八 ロー軌道 3 周期分の ST = 12.4350 とした.

図7 ノルムの比較

図 9 ノルムと整定時間の比較

図 7, 図 8 では, ω_{xy} は r = 0.6250, ω_{xyz} , ω_z , $\omega = 2, 3$ は r = 0.1250, $\omega = 1, 1/2$ は r = 0.2500 で最小のノルムとな り, それ以降では発散している. また図 9 より, ノルムと整 定時間の両方が小さくなる r が存在することがわかる. こ のときのそれぞれの R とフィードバックゲイン K を以下 に示す.

$$R = 10^{0.6250} \times I_3$$
.

K =	$\begin{bmatrix} 12.736 \\ -1.8847 \\ 4.6579 \\ 1.1856 \\ 0.0000 \\ 0.0000 \end{bmatrix}$	$5.3073 \\ -0.2885 \\ 1.1856 \\ 2.2652 \\ 0.0000 \\ 0.0000$	$ \begin{bmatrix} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.3522\\ 1.7538 \end{bmatrix}^T $

$$R = 10^{0.1250} \times I_3,$$

$$\boldsymbol{K} = \begin{bmatrix} 13.855 & 4.4795 & 0.0000 \\ -1.9953 & 0.6932 & 0.0000 \\ 5.6133 & 0.7747 & 0.0000 \\ 0.7737 & 3.3740 & 0.0000 \\ 0.0000 & 0.0000 & 1.0141 \\ 0.0000 & 0.0000 & 3.0866 \end{bmatrix}^T$$

$$R = 10^{0.2500} \times I_3.$$

	г 13.541	4.7067	^מ ד0.0000
	-1.9599	0.3747	0.0000
\boldsymbol{V}	5.3291	0.8820	0.0000
$\mathbf{n} =$	0.8820	3.0204	0.0000
	0.0000	0.0000	0.7848
	0.0000	0.0000	2.6820

それぞれの周波数におけるノルムを以下に示す.

表2 それぞれの周波数における最小のノルム

ω	ノルム
xy	1.770×10^{-2}
z	1.750×10^{-2}
2	1.810×10^{-2}
xyz	1.760×10^{-2}
1	1.790×10^{-2}
1/2	2.000×10^{-2}
3	2.160×10^{-2}

表より、移行制御において最小のノルムの周波数は $\omega = z$ であった.以上より、移行制御と維持制御において最小のノルムの周波数は ω_z となることがわかる.

4.5 ミッションにおける燃費評価

小八ロー軌道を生成するにあたり、周波数が整数の場合 は月の公転周期に小八ロー軌道の周期が比例するため観測 時に都合がよい.そこで周波数が整数の場合で最もノルム の低い $\omega = 2$ で維持制御を行うが好ましいと考える.ここ では、移行制御において維持制御と同様に周波数 $\omega = 2$ を 用いる場合の全時間にかかるノルムを比較し、どのように 差が出るかを検証していく.まず、周波数を変えずに小八 ロー軌道を生成するシミュレーションを示す.初めに、 L_2 点から目標軌道に移行させるシミュレーションを図 10 に 示す.

このときの全体にかかる入力を図 11 に示す.

移行から維持にかけた全時間にかかるノルムは 0.1832 となった.次に,移行制御から維持制御にかけて周波数を ω_z から $\omega = 2$ に変えて,小八ロー軌道を生成するシミュ レーションを以下に示す.図 12 は L_2 点から目標軌道まで を ω_z で移行したシミュレーションである.

図 12 移行制御 ω_z

このときの全時間にかかる入力を図 13 に示す.

シミュレーションより, ω_z から $\omega = 2$ に変化させること で、大きな入力が見られた.移行から維持にかけた全時間に かかるノルムは 0.1474 となった.周波数を変化させる場 合と周波数を変化させない場合を比較すると、周波数を変 化させる場合の方が周波数を変化させない場合に比べて小 ハロー軌道 1.5 周分のノルムが節約できることがわかる.

5 おわりに

本研究では月の裏側に小八ロー軌道を生成し,宇宙機を その軌道に乗せて観測を行うために,周波数制御と収束周 期内に加える制御を用いて目標軌道を維持させ,L₂点から 人工衛星を目標軌道へ移行させる制御を行った.また7つ の周波数に合わせた制御を行い,制御にかかるノルムを比 較し,より良い周波数を検討した.周波数制御を行う中で 目標軌道を維持させるのに最もノルムの低い設定をし,移 行制御から維持制御にかけて周波数を変化させることでノ ルムを抑えることを可能にした.その結果,ミッションを 行うにあたり,観測しやすくかつ燃料消費も抑えられる制 御方法を見つけることができた.

参考文献

- [1] 森泰親,現代制御理論,森北出版,pp94-96(2013)
- [2] A. Ichikawa., M. Bando.,"Formation Flying near the Libration Points in the Elliptic Restricted Three-Body Problem".