2重非心 F 分布の近似法についての研究

M2009MM012 前廣 芳孝 指導教員:松田 眞一

1 はじめに

2 重非心 F 分布の確率密度関数はとても複雑な形をし ており、直接パーセント点を求めることは困難である。こ のため、堀井 [2] は Tiku[5] や鳥越 [7] によって報告され た 2 重非心 F 分布の近似法を用いてパーセント点近似に よるパーセント点の導出を試みた。しかし、実際のデー タをふまえた自由度と非心度を用いた場合、これら 2 つ の近似手法でのパーセント点近似は自由度が小さい場合 に大きな誤差が伴ってしまう。または、プログラミング での計算途中にエラーとなり近似値を出せない場合が多 く存在することがわかった。このため、これらの近似法 は実用的ではなくモンテカルロ法で十分であることが報 告された。しかし、モンテカルロ法は多くの計算と時間 を必要とする。そこで、既存の近似法を元に自由度が小 さい場合でも実用的な改良ができないかを研究の目的と して取り上げた。

2 2重非心 F 分布とは

2 重非心 F 分布 $F''(\nu_1, \nu_2, \lambda_1, \lambda_2)$ は以下で定義される 確率変数である。(鳥越 [7] 参照)

$$F''(\nu_1, \nu_2, \lambda_1, \lambda_2) := \left\{ \frac{\chi_{\nu_1}^{'2}(\lambda_1)}{\nu_1} \right\} / \left\{ \frac{\chi_{\nu_2}^{'2}(\lambda_2)}{\nu_2} \right\}$$
(1)

このとき、分母と分子の χ はそれぞれパラメータ (自由 度, 非心度) が (ν_1, λ_1) と (ν_2, λ_2) の独立した非心カイ 2 乗 分布に従う確率変数である。2 重非心 F 分布の確率密度 関数は以下のように定義されている。

$$p_{F''}(x;\nu_1,\nu_2,\lambda_1,\lambda_2) := \sum_{r=0}^{\infty} \sum_{t=0}^{\infty} (-1)^{r+t} \frac{(\lambda_1/2)^r}{r!} \frac{(\lambda_2/2)^t}{t!} \cdot \left[\sum_{i=0}^r \sum_{j=0}^t (-1)^{i+j} \binom{r}{i} \binom{t}{j} p_F(x;\frac{\nu_1}{2}+i,\frac{\nu_2}{2}+j) \right] \\ (0 < x < \infty; \nu_1,\nu_2 = 1, 2, ...; \lambda_1, \lambda_2 > 0)$$
(2)

ここでの $\begin{pmatrix} r\\i \end{pmatrix}$ はr 個のものからi 個選ぶ組み合わせである。また、 $p_F(x; \frac{\nu_1}{2}+i, \frac{\nu_2}{2}+j)$ は自由度 (ν_1+2i, ν_2+2j) の中心F分布の密度関数であるので、以下のような関数となる。

$$p_F(x; \frac{\nu_1}{2} + i, \frac{\nu_2}{2} + j) = \frac{(\nu_1/\nu_2)^{\nu_1/2+i}}{B(\nu_1/2 + i, \nu_2/2 + j)} \frac{x^{\nu_1/2+i-1}}{(1 + (\nu_1/\nu_2)x)^{(\nu_1+\nu_2)/2+i+j}}$$

ここでの $B(\cdot, \cdot)$ はベータ関数である。

2 重非心 F 分布は分散分析の交互作用や誤差因子にお ける F 検定の検出力を求めるとき、タグチメソッドにお ける SN 比を検定する問題を考えるときに用いられる。

3 2 重非心 F 分布の近似法

堀井 [2] では、Tiku[5] と鳥越 [7] による近似法を元にし た 2 つのパーセント点近似法の評価を行った (Tiku 法、 Torigoe 法)。この近似法の詳しい導出方法は堀井 [2] を参 照されたい。ここでは、Mudholkar et al.[3] を元に堀井 [2] では評価されなかった 2 つの近似方法について詳しく 述べる。

3.1 Tiku法

 $((F_{\nu_1,\nu_2,\lambda_1,\lambda_2} + \zeta)/\tau)$ の分布の 3 次以下のモーメント を等置することによって自由度 (ν',ν_2) の中心 F分布 $F(\nu',\nu_2)$ で近似する方法である。この手法を堀井 [2] で は Tiku 法と呼んだ。最終的に以下の近似式が導き出さ れる。

$$P\{F_{\nu_1,\nu_2,\lambda_1,\lambda_2}^{''} < f\} \approx I_{\nu_0'}(\frac{1}{2}\nu_2,\frac{1}{2}\nu')$$

= $1 - \frac{1}{B(\frac{1}{2}\nu_2,\frac{1}{2}\nu')} \int_0^{\nu_0'} t^{\frac{1}{2}\nu_2 - 1}(1-t)^{\frac{1}{2}\nu' - 1}dt$ (4)

ただし $u_0' = 1/\left(1+rac{
u'}{
u_2}rac{f+\zeta}{ au}
ight)$ である。

3.2 Torigoe法

近似式 (4) の左辺が F 分布で近似できること (カイ 2 乗 分布でも表すことができる)を利用し、新たな統計量分布 を得て、その分布を Cornish-Fisher 展開して新たな近似 式を求めるものである。この手法を堀井 [2] では Torigoe 法と呼んだ。最終的に以下の近似式が導き出される。

$$-\frac{b_{\nu'} - \sqrt{f'_{\alpha} b_{\nu_2}}}{\sqrt{1 - b^2_{\nu'} + f'_{\alpha} (1 - b^2_{\nu_2})}} = u_{\alpha} + \frac{u^2_{\alpha} - 1}{24\{1 - b^2_{\nu'} + f'_{\alpha} (1 - b^2_{\nu_2})\}} \\ \cdot \left\{\frac{1}{\nu'^2} + \frac{1}{\nu'^3} - f'^{3/2}_{\alpha} \left(\frac{1}{\nu_2^2} + \frac{1}{4\nu_2^3}\right)\right\} \\ -\frac{2u^3_{\alpha} - 5u_{\alpha}}{576\{1 - b^2_{\nu'} + f'_{\alpha} (1 - b^2_{\nu_2})\}^3} \cdot \left(\frac{1}{\nu'^2} - \frac{f'^{3/2}_{\alpha}}{\nu_2^2}\right)^2$$
(5)

このとき u_{α} は N(0,1) の上側 100α パーセント点、 $f'_{\alpha} = (f_{\alpha} + \zeta)/\tau$ を示す。

3.3 MCL-E 法

Mudholkar et al. [3] の1つめの近似法は、エッジワース 級数展開とAty[1] によるキュムラント表現を組み合わせ ることによって標準正規変数の分布関数を用いた2重非 心F分布の累積分布関数の近似式を導出するものである。

(3) 3.3.1 導出方法

エッジワース級数近似を展開するために2重非心 F 分 布を以下のように置き換える。

$$P_r[F'' \le c] = P_r[v = v_1 - c^{1/3}v_2 \le 0]$$
(6)

このとき $v_1 = \{\chi_{\nu_1}^{'2}(\lambda_1)/\nu_1\}^{1/3}$ 、 $v_2 = \{\chi_{\nu_2}^{'2}(\lambda_2)/\nu_1\}^{1/3}$ を意味する。ここで Aty[1] の $\{\chi_{\nu_1}^{'2}(\lambda)/(\nu + \lambda)\}$ のキュムラントの表現を用いること、 $v_1 \ge v_2$ の独立性を用いることで以下のようなキュムラント $k_s(v = v_1 - c^{1/3}v_2$ のs = 1, 2, 3, 4)の式を得ることができる。

$$\begin{aligned} k_1 &= (r_1/\nu_1)^{1/3} T_1(r_1, b_1) - (cr_2/\nu_2)^{1/3} T_1(r_2, b_2), \\ k_2 &= (r_1/\nu_1)^{2/3} T_2(r_1, b_1) + (cr_2/\nu_2)^{2/3} T_2(r_2, b_2), \\ k_3 &= (r_1/\nu_1) T_3(r_1, b_1) - (cr_2/\nu_2) T_3(r_2, b_2), \\ k_4 &= (r_1/\nu_1)^{4/3} T_4(r_1, b_1) - (cr_2/\nu_2)^{4/3} T_4(r_2, b_2) \end{aligned}$$

このとき、

$$\begin{aligned} T_1(r,b) &= \\ \left(1 - \frac{2(1+b)}{9r} - \frac{40b^2}{3^4r^2} + \frac{80(1+3b+33b^2-77b^3)}{3^7r^3} + \frac{176(1+4b-210b^2-2380b^3-2975b^4)}{3^9r^4}\right), \end{aligned}$$

$$T_2(r,b) =$$

$$\left(\frac{2(1+b)}{9r} - \frac{16b^2}{3^3r^2} + \frac{8(13+39b+405b^2-1025b^3)}{3^7r^3} + \frac{160(1+4b-87b^2+1168b^3-1544b^4)}{3^8r^4}\right)$$
$$T_3(r,b) = -\left(\frac{8b^2}{3^3r^2} - \frac{32(1+3b+21b^2-62b^3)}{3^6r^3}\right)$$

$$-\frac{32(8+3b-177b^2+4550b^3-6625b^4)}{3^8r^4}\bigg)$$
$$T_4(r,b) = \left(\frac{16(1+3b+12b^2-44b^3)}{2}\right)$$

$$-\frac{3^{6}r^{3}}{-\frac{256(1+4b-6b^{2}+274b^{3}-458b^{4})}{3^{8}r^{4}}}\right)$$

 $r_i = \nu_i + \lambda_i, b_i = \lambda_i / r_i, i = 1, 2$ である。 以上を用いてエッジワース級数展開を行うことにより、2 重非心 F の累積分布関数のためのエッジワース級数近似 を得ることができる。

$$P_{r}[F'' \leq c] := \Phi(d) - \left[\frac{\beta_{1}}{6}(d^{2} - 1) + \frac{\beta_{2}}{24}(d^{3} - 3d) + \frac{\beta_{1}^{2}}{72}(d^{5} - 10d^{3} + 15d)\right] \cdot \phi(d)$$

$$(7)$$

このとき、 $d = -k_1/\sqrt{k_2}$ 、 $\beta_1 = k_3/k_2^{3/2}$ 、 $\beta_2 = k_4/k_2^2$ 、 $\Phi(\cdot)$ は標準正規変数の分布関数、 $\phi(\cdot)$ は確率密度関数を 意味する。この近似法を導出者 3 人の頭文字 MCL とエッ ジワース級数展開の E を合わせ、本研究では MCL-E 法 と呼ぶことにする。

3.4 MCL-M法

Tiku[6] は非心 F 分布と合流型超幾何分布に対応する モーメントに関して 2 重非心 F の r 番目のモーメント μ'_r の表現を導き出した。これらの計算は困難なため、合流 型超幾何分布を近似することによっての r 番目のモーメ ント近似法も Tiku は同時に導き出した (この 3 次の近似 モーメントは 2 重非心 F 変数 $F''(\nu_1, \nu_2, \lambda_1, \lambda_2)$ の近似 $aF(\nu'_1, \nu_2) + b$ のパラメータ (a, ν'_1, b) を決定することに 使われる)。これらを利用し Mudholkar et al.[3] が非心 F 変数に基づくモーメント近似を導き出したものが 2 つ目 の近似法である。

3.4.1 導出方法

2 重非心 *F* の分母の非心カイ 2 乗は変数 $c\chi^2\nu$ によって 近似できることを利用する。このときの c、 ν (初めの 2 つ のモーメントによって決まる) は $c = (\nu_2 + 2\lambda_2)/(\nu_2 + \lambda_2)$ と $\nu = (\nu_2 + \lambda_2)^2/(\nu_2 + 2\lambda_2)$ である。従って、2 重非心 *F* 変数のモーメントは以下の変数とほぼ等しくなる。

$$aF'(\nu_1,\nu,\lambda_1) = a\frac{\chi_{\nu_1}^{'2}/\nu_1}{\chi_{\nu}^2/\nu}$$
(8)

このとき、 $a = \nu_2/(\nu_2 + \lambda_2)$ 、 $F'(\nu_1, \nu, \lambda_1)$ はパラメータ (ν_1, ν, λ_1) での非心 F 変数である。このモーメント近似 が 2 重非心 F 分布の確率とパーセント点近似に利用でき ることは明らかである。この近似方法を導出者 3 人の頭 文字 MCL とモーメント近似の M を合わせ、本研究では MCL-M 法と呼ぶことにする。

4 近似法の比較

R を用いて近似法の精度の比較を行った。方法は自由 度 (ν_1, ν_2) と非心度 (λ_1, λ_2) のパラーメータを変更し、そ のときのパーセント点近似値と真値との比較により精度 を見る。

4.1 真値の定義

堀井 [2] によって定義された真値を用いる。この方法は R に元々入っているカイ 2 乗乱数 (rchisq) を用いたもの である。非心カイ 2 乗乱数を 10000 組発生させて式 (1) を 計算し、それを 10000 回繰り返したパーセント点の平均 の値を真値と定義する。このモンテカルロ法での真値は 相対標準誤差が 0.0003 であり、非常に信頼の高い値が出 ることが堀井 [2] によってわかっている。しかし、1 つの パーセント点を求める計算に 1.40GHz のノート PC にお いて約 6 分程度かかってしまう。また、乱数を用いての 計算のため、同じ自由度と非心度の組み合わせであって も最終的な結果が若干異なってしまうという欠点がある。

4.2 プログラム

Tiku 法、Torigoe 法の近似式 (4)、(5) についてのプロ グラムも堀井 [2] によって作成されているのでそのプログ ラムを使用した。Tiku 法 (4) の積分部分は中点則を使用 しパーセント点を求め、Torigoe 法 (5) はニュートン・ラ プソン法を使用してパーセント点近似を求めるものであ る。MCL-E 法 (7) と MCL-M 法 (8) の近似式についての プログラムは作成した。堀井 [2] と同様にソフトウェアは Rを使用する。式 (7) は確率を求める形であるので、パー セント点を求める考え方として、($\nu_1, \nu_2, \lambda_1, \lambda_2, x$)を決定 する (x は内部の関数で自由度 (ν_1, ν_2) の中心 F 分布の パーセント点を求めることに使われる)。この x を変更し ていき、結果として帰ってくる 2 重非心 F 分布の下側確 率の値が 95 パーセント点を求めたいならば 0.95、5 パー セント点ならば 0.05 になるまで繰り返す。このときの x の中心 *F* 分布 のパーセント点が 2 重非心 *F* 分布のパー セント点近似である。式 (8) のパーセント点を求める考え 方として、2 重非心 *F* 分布の確率を次のように変換する。

$$Pr\{F'' \le x\} = Pr\{aF' \le x\} = Pr\left\{F' \le \frac{x}{a}\right\} \quad (9)$$

よって、 $(\nu_1, \nu_2, \lambda_1, \lambda_2, x)$ を決定して "x/a"を用いての非 心 F 分布の分布関数より求める。このときの x の値を変 更していき、95 パーセント点を求めたいならば 0.95 に、 5 パーセント点を求めたいならば 0.05 になるように x を 定める。このときの x の値が 2 重非心 F 分布のパーセン ト点近似となる。また、プログラム内での x の探索方法 として MCL-E 法、MCL-M 法ともに 2 分法を使用した。

4.3 自由度の大きい場合

自由度1を5、10、20、自由度2を10、20、30、非心 度1と2を5、10に変化させパーセント点近似値を求め る。このときの結果の一部を表1と表2に示す。表中で はTiku法、Torigoe法、MCL-E法、MCL-M法をTI、 TO、E法、M法と略して記載する。また、計算途中で符 号の中が負となり値が出せないものは "--"で示す。

表 1 $\alpha = 95$ %

ν_1	ν_2	λ_1	λ_2	真値	TI	ТО	E 法	M 法
5	10	5	5	4.054	4.083	4.085	4.173	4.016
5	20	5	5	4.029	4.043	4.043	4.115	4.025
5	30	5	5	4.028	4.041	4.040	4.114	4.028
10	10	10	10	2.585	3.261	-	2.646	2.544
10	$\overline{20}$	10	10	2.910	3.031	3.033	2.941	2.901
10	30	10	10	3.046	3.065	3.065	3.073	3.043

表 2 $\alpha = 5$ %

ν_1	ν_2	λ_1	λ_2	真値	TI	ТО	E 法	M 法
5	10	5	5	0.338	0.347	0.347	0.317	0.338
5	20	5	5	0.422	0.396	0.396	0.395	0.422
5	30	5	5	0.459	0.435	0.435	0.429	0.459
10	10	10	10	0.387	-	-	0.378	0.387
10	20	10	10	0.543	0.730	1	0.533	0.543
10	30	10	10	0.627	0.635	0.635	0.615	0.627

Tiku 法、Torigoe 法ともに求められない点が多く存在 するが、MCL-E 法、MCL-M 法はすべての組み合わせで 近似値を求めることができる。比較的自由度の大きい場 合のシミュレーションでの4つの近似法の最大誤差と誤 差平均の比較の表3を示す。MCL-M 法は95、90パーセ ント点近似ともに真値に対する誤差の割合が大体1%程 度である。90パーセント点近似ではTorigoe 法が最も良 い結果となっているが、近似値を求められない点が存在 することを考えると最良とはいえない。10、5パーセント 点近似を見ると、MCL-M 法は最大誤差と誤差平均が非 常に小さく真値に近い近似値を求めることができること がわかる。よって、自由度が比較的大きい場合はMCL-M 法が最も有効であるといえる。

表3 誤差の比較

パーセント点		TI	ТО	E 法	M 法
95%	最大誤差	0.811	0.178	0.133	0.059
	誤差平均	0.156	0.043	0.047	0.015
90%	最大誤差	0.565	0.019	0.339	0.025
	誤差平均	0.087	0.007	0.043	0.007
10%	最大誤差	0.150	0.014	0.036	0.001
	誤差平均	0.034	0.005	0.010	0.000
5%	最大誤差	0.256	0.026	0.040	0.001
	誤差平均	0.058	0.010	0.012	0.000

4.4 自由度の小さい場合

使用した自由度と非心度は堀井 [2] によって採取された 静特性における望目特性の実データ(あるサーキットで のカーレースにおける1周のタイムのシミュレーション データ)を元にしたものである。詳しい静特性の説明、シ ミュレーションの結果、導出法は堀井 [2] を参照されたい。 最終的に導き出される分布はF''(1,5,564588.16,14.29)、 F''(1,5,77894.98,14.83)、F''(1,5,15386.60,4.83)である (堀井 [2] では計算途中に誤りがあるため、最終的な分布 は高橋 [4] による結果を参照)。実データの結果をふまえ て、自由度1は1に自由度2は5に固定し、非心度1は 0、10、100、1000、10000に、非心度2は0、2、 4、6、8、10に変化させシミュレーションを行った結果の 一部を表4と表5に示す。Tiku法とTorigoe法について は堀井 [2] によって実用的でないとわかっているため、表 への記載はスペースの都合上省略する。

表 4 静特性 (95%)

ν_1	ν_2	λ_1	λ_2	真値	E 法	M 法
1	5	10	0	54.852	56.749	54.876
1	5	100	0	448.616	446.632	448.803
1	5	10000	0	43641.280	43396.180	43662.430
1	5	10	4	26.929	29.531	25.701
1	5	100	4	216.943	232.033	203.998
1	5	10000	4	21046.960	22537.120	19733.150
1	5	10	10	13.012	14.176	12.472
1	5	100	10	100.249	106.279	94.317
1	5	10000	10	9636.978	10234.980	9026.467

表 5 静特性 (5%)

ν_1	ν_2	λ_1	λ_2	真値	E 法	M 法
1	5	10	0	2.038	1.749	2.039
1	5	100	0	42.032	41.931	42.045
1	5	10000	0	4511.976	4508.188	4513.316
1	5	10	4	1.155	0.975	1.156
1	5	100	4	24.799	24.284	24.759
1	5	10000	4	2682.411	2628.578	2673.896
1	5	10	10	0.712	0.600	0.713
1	5	100	10	16.277	15.911	16.219
1	5	10000	10	1782.268	1742.777	1771.576

95、90 パーセント点の場合は非心度 2 が 0 のときに理論 上 MCL-M 法が有効であり、10、5 パーセント点の場合は どの非心度でも MCL-M 法が有効であるとわかった。し かし、非心度 2 が 0 以外の場合は非心度 1 の値によって MCL-E 法、MCL-M 法ともに真値に対する誤差の割合が 大きくなり、MCL-E 法では最大で 12%、MCL-M 法で は最大で 7% ほどになる。また、MCL-E 法、MCL-M 法 ともに非心度 2 の影響は小さく、非心度 2 を変化させて も同じような誤差の周期を繰り返すことがわかった。

5 新たな近似法の提案

実データをふまえたシミュレーションにより、95と90 パーセント点近似で MCL-E 法は真値よりも大きい近似値 を示し、MCL-M 法は真値よりも小さい近似値を示すこと がわかった。また、非心度1の値が大きい場合は MCL-E 法と MCL-M 法の誤差の絶対値がほぼ等しくなることが 多い。このため、2つの近似値の中間点を取れば真値に近 づくと考えられる。これを ME 法と呼ぶことにすると

ME 法の近似値 = <u>(MCL-M 法の近似値 + MCL-E 法の近似値)</u> 2 (10)

である。堀井 [2] による実データ(静特性、動特性)を元 にした自由度と非心度でシミュレーションを行い、近似 法の場合分け表を作成した。これを表 6 に示す。

95、90 パーセント点近似	使用する近似法
非心度 2 が 0	M 法
自由度 2 が 5 以下	ME 法
自由度2が6から7で非心度1が10以下	M 法
自由度2が6から7で非心度1が11以上	ME 法
自由度2が8から10で非心度1が25以下	M 法
自由度 2 が 8 から 10 で非心度 1 が 26 以上	ME 法
自由度 2 が 11 から 14 で非心度 1 が 50 以下	M 法
自由度 2 が 11 から 14 で非心度 1 が 51 以上	ME 法
10、5 パーセント点近似	M 法

表6 近似法の場合分け

表6を元に ME 法と M 法をうまく使いわけることで、表4 での近似は表7のように改善できる。

表 7 場合分けを用いた近似結果

ν_1	ν_2	λ_1	λ_2	真値	近似値	近似法
1	5	10	0	54.852	54.876	M 法
1	5	100	0	448.616	448.803	M 法
1	5	10000	0	43641.280	43662.430	M 法
1	5	10	4	26.929	27.616	ME 法
1	5	100	4	216.943	218.015	ME 法
1	5	10000	4	21046.960	21135.135	ME 法
1	5	10	10	13.012	13.324	ME 法
1	5	100	10	100.249	100.298	ME 法
1	5	10000	10	9636.978	9630.724	ME 法

6 まとめ

10、5 パーセント点近似の場合は MCL-M 法は真値に 対する誤差の割合が最大でも0.6% であり実用的である と結論付けた。95、90 パーセント点近似の場合は ME 法 を提案し、自由度と非心度の値による場合分けの表6を 導出した。表 6 をもとに MCL-M 法と ME 法の場合分け を行うことで、真値に対する誤差の割合を最大でも2.5% 程度までにすることが可能となる。また、この2.5%程 度の誤差がでる場合の非心度1は10の場合である。実 データをもとにした非心度1は非常に大きい場合が多く、 ME 法を用いると真値に対する誤差の割合が1%以下に できる。また、非心度2が0の場合はMCL-M法を用い ることでほぼ正確な値を出すことができることがわかっ た。このため、95、90パーセント点近似でも近似法は有 効であると結論付けた。以上により、近似法によるパー セント点近似は自由度の小さい実データにおいても十分 実用的であると結論付ける。

7 おわりに

自由度の値をさらに増やしての場合分け、非心度1が 10以下の場合の検討など今後の課題がまだまだ残ってい る。しかし、モンテカルロ法では1つの値を導出するの に約6分程度かかるのに対し、近似法を用いると一瞬で パーセント点近似値を求めることができる。これらの近 似法うまく使いこなすことで作業効率を格段に上げるこ とができるだろう。

参考文献

- [1] Aty,A.S.H.(1954): Approximate formula for the percentage points and the probability integral of the non-central χ^2 -distribution, *Biometrika* 41, 538-40.
- [2] 堀井 里佳子 (2010): タグチメソッドにおける SN 比の統計的分布について, 2009 年度南山大学大学院数理 情報研究科修士論文.
- [3] Mudholkar,G.S., Chaubey,Y.P. and Lin,C. (1976): APPROXIATIONS FOR THE DOUBLY NONCE-NTRAL-F DISTRIBUTION, Communications in Statistics-Theory and Methods, Vol.5, 49-63.
- [4] 高橋 知也 (2011): タグチメソッドの SN 比における 信頼区間の適用方法の研究, 2010 年度南山大学大学院 数理情報研究科修士論文.
- [5] Tiku, M.L. (1965): Series expansion for the doubly noncentral F-distribution, *Austral. J. Statist.*7, 78-89.
- [6] Tiku, M.L.(1972): A note on the distribution of the doubly non-central F-distribution, Austral. J. Statist.14, 37-40.
- [7] 鳥越 規夫 (1997): 2 重非心 F 分布のパーセント点の 近似について、

http://www.kurims.kyoto-u.ac.jp/~kyodo
/kokyuroku/contents/pdf/0916-4.pdf.