

Framework for Migration of Legacy Applications to Cloud Computing

M2011MM078 Manjula Upashantha

Supervisor Mikio Aoyama

1. Introduction
The author proposes a framework for modernization of

legacy applications. In migration, legacy application is moved
into a new state and a new platform without changing its core
business logical processing. Hence with the migration, cost of
development and bugs occurrences should be minimized. The
proposed method facilitates migration of legacy application to
cloud computing via Service-Oriented Architecture (SOA).

1.1. Background of the Research

Service-orientation is a design paradigm to build computer
software in the form of services. Like other design paradigms,
e.g. object-orientation, service-orientation provides a governing
approach to automate business logic as distributed systems.
Similarly cloud computing is the result of an evolution of the
widespread adoption of virtualization, SOA, autonomic, and
utility computing. Details such as the location of infrastructure
or component devices are unknowns to most end-users, who no
longer need to thoroughly understand or control the technology
infrastructure that supports their computing activities.

Modifing legacy applications, refered as migration to new
systems, has few methods. In any methods, there are some
challenges to overcome, Generally legacy applications have
tighly coupled their business logics with user interface. In cloud
computing envirenment exsisting user interfaces are not useful
and new interfaces have be built which can run on Web
browsers. To address the issues with user interfaces, there are
some methods porposed over the past years. Later, some of
those proposals are explained in detail.

1.2. Research Problem

One of the key characteristics of legacy applications is its
functions are tighly coupled with GUI. Coupling of functions
with GUI gives more benefits for the application developers.
But when migrating these applications into cloud computing,
this coupling makes the job more complicated. Web pages take
place of GUI of legacy applications in cloud computing
environment. Therefore, decoupling GUI from functions and

making functions more independent are challenging task.

2. Related Works
To facilitate migration of the legacy applications into cloud

computing, there are many researches going on the last decade.
Among those researches, there are interesting methods to
address the issues with user interface when migrating the
legacy applications into cloud computing.

Sneed et al. have presented a tool supporting process to cut
out selected sections of legacy code, and providing them with
an XML interface [2]. Stroulia, et al. have proposed a method
named CelLEST [3]. A wrapping method is proposed by
Canfora, et al. from RCOST (Research Centre on Software
Technology) [1]. A generic black-box approach is proposed by
Schulze et al. to access legacy applications as cloud-based
service [4].

3. Approach
This paper proposes a framework which consists of a set of

methods to migrate legacy applications into cloud computing.
And this migration is done via SOA. Any of these methods
never change or modify legacy functions. Instead they add
additional function call gateway to access the legacy functions.
This gateway function acts as an interface to the legacy
function. Figure 1 shows an overview of the proposed
approach.

Figure 1: Overview of Proposed Approach

2

Legacy
Application

New System
of Services

Code Analysis

Function
Identification

Legacy
Adjustment

Services

Service-Oriented Architecture

As the first step, whole legacy source code should be
analyzed. And then the function identification step follows. In
this step all the functions in source code should be identified
and then they should be categorized. All the methods proposed
in this framework are used based on this function identification
and categorization. The proposed method converts almost all
the functions in legacy source codes into relevant coding.

4. Proposed Framework
This framework addresses problems occurs when migrating

legacy functions which are tightly coupled with GUI. These
types of functions are very common in legacy applications
which were developed in event driven programming languages.
Process of this framework uses the source code of the legacy
application and all the functions in this source code are used to
create Web services or client side scripting functions. Even
though, this framework uses the source codes, it does not
change any single line of legacy functions. It just copies the
functions into respective classes. This framework consists of a
set of methods and these methods converts legacy functions
into Web services or client side scripting functions.

4.1. Classification of functions

We introduced three types of function classifications. These
classifications will be used in migration process of functions to
services.

4.1.1. First Level of Classification

At the first level, functions in a source code are classified
into three categories, as Fully Bound, Partially Bound, and
Unbound. And this is done based on their degree of
dependency on the GUI.
4.1.1.1. Fully Bound Function

If the internal working of a function is fully coupled with
GUI, then it is categorized as fully bound function. Figure 2
shows an example for fully bound function.

4.1.1.2. Partially Bound Function
Functions which are coupled with GUI called as partially

bound functions. Figure 3 shows an example for partially
bound functions.

4.1.1.3. Unbound functions

Functions which are not coupled with GUI called Unbound
Functions. Figure 4 is an example for unbound function.

4.1.2. Second Level of Classification

In the second level of classification, function to function
coupling is considered. Fully bound functions in the first level
classification are not applicable in this classification since they
are purely working on GUI.

4.1.3. Third Level of Classification

The objective of this classification is to identify the event
handlers. This identification is used when developing the cloud
version of legacy application.

5. Converting Functions into Services
After the classification of the legacy functions, they are

converted to services or client side scripting functions. There
are several methods proposed in this framework based on the
above classification in order to migrate legacy functions into
services.

Figure 4 Unbound Function

Private Function Uname(empid As String) As String
Dim rst As New ADODB.Recordset
Dim sqlstr As String
sqlstr = "select initials,Lname from emphed where empid='" &
empid& "'"
rst.Opensqlstr, secuCon
If rst.BOF = False Then

Uname = rst!initials& " " &rst!lname
Else

Uname = ""
End If
rst.Close

End Function

Figure 3 Partially Bound Function

Private Function Uname() As String
Dim rst As New ADODB.Recordset
Dim sqlstr As String
sqlstr = "select initials,Lname from emphed where empid='"
&txtEmployeeID.Text& "'"
rst.Opensqlstr, secuCon
If rst.BOF = False Then
Uname = rst!initials& " " &rst!lname

Else
Uname = ""

End If
rst.Close

End Function

Figure 2 Fully Bound Functions

Private Sub resetEmp()
txtEmployeeId = ""

End Sub

5.1. Fully Bound Function to Service (FB to Service)
The mechanism to migrate the internal working of this fully

bound functions to Web pages is named “FB to Service”. In
the FB to Service, internal working is moved to client side of
the Web page and these workings are done by client side
scripting coding.
5.1.1. Reestablishing Coupling

In FB to Service method, functionalities of fully bound
functions will be shifted to client-side of the Web page. Hence,
coupling of these functions with other functions or events has to
be reestablished in different way. Under the FB to Service, this
framework proposes a mechanism to address this issue. As the
solution for this issue, a special class “toClientFunc” is
provided in this proposal and it is encapsulated with
Dynamic-Linked library (DLL) “webCom”. The usage of the
DLL is to establish coupling of dependency between
components or functions

5.2. Partially Bound Functions to Service (PBF to Service)

The second proposed mechanism is called “PBF to
Service”. PBF to Service is for the partially bound functions
which is the second category of the first level classification.

There are three types of partially bound functions. This
classification is made based on their coupling levels.

1. Simple partially bound
2. Extended partially bound
3. Special Partially bound

5.2.1. Simple Partially Bound Function (SPBF)
A function is considered as a simple partially bound, if it

is coupled with GUI by sharing values of objects on the user
interface or they can be coupled with another fully bound
function.

5.2.2. Extended Partially Bound Function (ExPBF)

Extended partially bound is an extended version of
simple partially bound function. Functions belong to this
category are coupled with another partially bound functions as
well.

5.2.3. Special Partially Bound Function (SpPBF)

In the middle of the process of Special partially bound
functions, they request some input from user for their further
processing.

5.2.4. Technical Overview of PB to Service

PBF to Service of this proposed frame work is on

providing mechanism for migration of partially bound
functions to services. As explained in the above section, there
are three kinds of partially bound functions. They need three
different mechanisms for their migrations into services. In PBF
to Service, three mechanisms have been proposed for each of
these partially bound functions. In all the methods of PB to
Service Scheme, each and every legacy function except fully
bound is wrapped with an interface called “Gateway Method”.
Figure 5 shows an example for gateway Method.

5.2.4.1. Simple partially bound functions into service (SPB to
Service)

This is the first method in PBF to Service, which
converts simple partially bound functions (SPBF) into services.
The key concept behind this method is the objects on the GUI
are replaced by shared variables. In this framework classes are
created for each and every form of the legacy application.
Methods in these classes are the functions of their respective
forms. Hence simple partially bound functions are now in the
form of methods. Therefore they can be referred as “Simple
partially bound methods”.

5.2.4.2. Extended partially bound functions into service
(ExPB to Service)

Under the PBF to Service, “ExPB to Service” is a
proposed method for migration of extended partially bound
functions to service. Same as the “SPB to Service” method,
“ExPB to Service” also start from classes. The gateway method
of “ExPB to Service” method has to do adjustments for its
legacy function as in SPB to Service and additionally for its
dependency function too.

5.2.4.3. Special partially bound function into Service (SpPB to
Service)

Method “SpPB to Service” is the proposed method to
migration of special partially bound functions into service.
After migrating the functions to service that is in an
environment where GUI and business logic processing are
done on two different and separate places, their original
behavior won’t be applicable. “SpPB to Service” method
addresses this issue. “SpPB to Service” method consists of two

Public Function G_getName (id As String) As String
txtMemberID.text = id
G-getName = getName

End Function

Figure 5 Gateway Method

sub methods “SpPB Type-1 to Service” and “SpPB Type-2 to
Service”
5.2.4.3.1. SpPB Type-1 to Service Method

“SpPB Type-1 to Service” method is same as to
gateway function. “SpPB Type-1 to Service” method creates a
gateway method as in other methods. Two tasks that is
initialization of properties and methods call take place in this
gateway method too. This method is the same for the type-1
and type-2. After the gateway method call, an additional
method call “deviation method” is created. The name and
parameters of this method should be same as name of the
function or the method used in this legacy functions to get the
user input during its execution. For example, “MsgBox”
function in Visual Basic can be used in a method as follows.

“MsgBox("Are You Sure to pay 400 to the charity fund", vbYesNo,

"charity Payment") = vbYes “
Then the new deviation method should be created as

follows.
Public Function MsgBox(s1 As String, s2 As String, s3 As String) As

Integer
The objective of this deviating method is to deviates the

functional call made to MsgBox function in Visual Basic to this
deviating method. Internal working of this deviating method
provides required data for the rest of processing of the legacy
function.

5.2.4.3.2. SpPB Type-2 to Service Method

The proposed method for convert Special partially
bound function type 2 into Web service is referred as “SpPB
Type2 to Service”. “SpPB Type2 to Service” Method is almost
same as “SpPB Type1 to Service” method upto creation of
deviating method. Deviating method in “SpPB Type2 to
Service” sends a request to user who is at the client side for
necessary data to be supplied. These data are then be used in
main SpPB Type2 function.

5.3. Unbound Function to Service (UB to Service)

Converting unbound functions into services are rather
simple and straight forward than partially bound functions.
Since these are not coupled with GUI, there is no need for
gateway function. These functions are copied into its related
class directly without doing any additional work. Then this
class is encapsulated in to related DLL.

6. Evaluation and Discussions
The framework presented in this paper is to be used to

facilitate the migration process of legacy applications into cloud
computing. Since this framework uses sauce code, high quality
migration can be expected. Even though, these methods deal
with source code of the legacy applications, they never touch
the coding of functions except for the fully bound functions. In
fact, they add an interface for each and every function of the
source code. Hence, the internal working of legacy function
will not be changed. Therefore, original performance can be
preserved.

7. Future Works
As future studies, some research should be done to improve

the speed of the new application. This framework is more
suitable for small applications. However, to expand this to
large-scale applications, there should be tool supporting. Hence
find or developing suitable tool to automate this process is one
of the main tasks to be done. Also, application of this
framework to multiple languages is another quality to be added
to this framework.

8. Conclusions
This paper proposes a framework to facilitates the migration

process of legacy applications into cloud computing. This
proposed framework addresses the problem related with
coupling function with GUI. To address this problem, it
proposes an interface for function called “Gateway Method”.
Any request to original function should be made via this
gateway method. This gateway method does some adjustment
so that the legacy function is isolated or decoupled from GUI
and can be accessible independently.

References
[1] G. Canfora, et al., Migrating Interactive Legacy Systems to

Web Services, Proc. CSMR 2006. Mar. 2006, pp.
320-329.

[2] H. M. Sneed, et al., Creating Web Services from Legacy
Host Programs, Proc. WSE’03, Sep. 2003, pp. 59-65.

[3] E. Stroulia, et al., From Legacy to Web through Interaction
Modeling, Proc. ICSM’02, Oct. 2002, pp.320-329.

[4] T. Schulze, et al., Towards Providing Lightweight Access
to Legacy Applications as Cloud-Based Services, Proc.
ACIS 2010, Dec. 2010, http://aisel.aisnet.org/acis2010/47.

