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1 Introduction

1.1 Background

In general, for the precise positioning control, it is nec-
essary to satisfy the specification which follows the refer-
ence without stationary error and overshoot. However,
the friction property of the machine element deteriorates
the positioning performance. The stick-slip motion, the
stationary error, overshoots, and the limit cycles are
generated as an influence of friction. To achieve the fric-
tion compensation, many methods are proposed such as
disturbance observer[1] and PD control[2]. Serrarens, et
al.[3] suppresses the stick slip motion by the frequency
shaping of H∞ control. H∞ control is used by automat-
ically shaping of the disturbance compensation and the
(semi)complementary sensitivity function[4]. H∞ loop
shaping is a control system design method proposed by
McFarlane, et al.[5]. The H∞ loop shaping controller
has a structure with LQ state feedback gain and state
observer, so it is expected to improve the plant response
using the evaluation function of the LQ control [6]. As
an example of applying the positioning control system
by the H∞ loop shaping, Moon, et al.[7] design the con-
troller that takes the disturbance control and the refer-
ence tracking performance into consideration.

1.2 Objectives and Method

In this study, we propose the method of the position-
ing control for the ball screw system achieved by H∞
loop shaping. The designed controller satisfies the fric-
tion compensation, the reference tracking performance,
and improvement of plant response by using weight
functions. The dynamic weight function and the con-
stant matrix are used. The dynamic weight function
is selected to satisfy the friction compensation and the
reference tracking performance. The friction compensa-
tion is focused on the frequency characteristics of the
friction. The frequency region where a static friction
and the stick-slip motion appears predominantly is iden-
tified. The constant weight is selected to improve the
plant response. The selection of the constant weight for
LQ control is easier than selecting appropriate weighting
function for standard H∞ control synthesis framework.
Thus in this study, the constant weight is selected to
simplified the trial and error for weight function. The
effectiveness of the H∞ loop shaping controller is illus-
trated by using the simulations with the nonlinear fric-
tion and the experiments.

2 Characteristics of Control Plant

2.1 Ball Screw System

In this study, the ball screw system is used as a control
plant. It controls the table position using drive force
of the DC servo motor(rated capacity 110[W], rated
torque 0.221[Nm]) through the ball screw(entire length
100[mm]). The optical encoder(resolution performance
0.1[µm]) is used to measure the position.

2.2 Modeling of Plant

The motion equation is shown in Eq.(1), where y[m]
is the position of the table position, u(t) is the current
input of the motor. Physical parameters are shown in
Table 1.

Mÿ(t) + Fv ẏ(t) =
Kt

R
u(t) (1)

Table 1 Parameters of ball-screw system

torque constant Kt 0.34[Nm/A]
coefficient of viscosity Fv 5.0 × 103[Ns/m]

mass of table M 0.49[kg]
ball screw constant R 6.37 × 10−4[m/rad]

Let the state vector x(t) = [y(t) ẏ(t)]T , the state space
representation of the ball screw system described by
Eq.(2). In this study, Eq.(2) is used by the control de-
sign.

ẋ(t) =

[
0 1
0 −Fv

M

]
x(t) +

[
0
Kt

RM

]
u(t)

x(t) =

[
1 0
0 1

]
x(t) (2)

2.3 Modeling of Nonlinear Friction

Generally, the friction model is consisted of the static
friction, the coulomb friction, and the viscous friction.
Marton et al.[8] compensates the stick slip motion by
using the friction model with the Striebeck effect. Thus
in this study, the Tustin model[8], which is the nonlinear
friction model with the Striebeck effect, is used. The
Tustin model is shown in Eq.(3).

Fn = (Fc + (Fs − Fc)e
− |ω|

ωs )× sgn(ω) + Fvω (3)

Where ω is the table velocity, ωs is the Striebeck ve-
locity, Fs is the maximum static frictional force, Fc is
the coulomb frictional force, Fv is the viscous friction
coefficient, sgn(·) is the signum function. The friction is
identified by the response experiments which gives the
sinusoidal input to the ball screw system. In this study,
the nonlinear simulation is conducted by using the fric-
tion model of Eq.(3).

2.4 Characteristics of Nonlinear Friction

Even though the friction itself is nonlinear, the behav-
ior of friction can be considered to have some frequency
or repeatedly movement. In this study we try to ex-
tract some frequency that might explain the stick-slip
motion. The stick-slip motion is analyzed by giving the
current of 0.4[A] to the plant in open loop. The table
position is shown in Fig.1, and its spectrum is shown in
Fig.2. As can be seen in Fig.2, the stick-slip motion has
some dominant frequency in near 10[rad/sec]. Thus in
this study, the low frequency(0[rad/sec]) for static fric-
tion and near 10[rad/sec] for stick-slip are considered for
friction compensation.
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3 Design of Positioning Control

3.1 H∞ Loop Shaping

The control design via H∞ loop shaping proposed by
McFarlane, et al.[5]. It is well known that the H∞
loop shaping controller C∞(s) for the design model
Ps(s) = {Ad, Bd, Cd, Dd} is given by Eq.(6) using the
positive solution X and Z for Ricatti equations Eq.(4)
and Eq.(5). λmax is the maximum eigenvalue.

(Ad −BdS
−1DT

d Cd)
TX +X(Ad −BdS

−1DT
d Cd)

−XBdS
−1BT

d X + CT
d R−1Cd = 0 (4)

(Ad −BdS
−1DT

d Cd)Z + Z(Ad −BdS
−1DT

d Cd)
T

−ZCT
d R−1CdZ +BdS

−1BT
d = 0 (5)

R = I +DdD
T
d , S = I +DT

d Dd

C∞(s) =

[
Ad +BdF +H(Cd +DdF ) H

BT
d X −DT

d

]
(6)

F = −S−1(DT
d Cd +BT

d X), L = (1− γ2)I +XZ,

H = γ2(LT )−1ZCT
d , γ > (1 + λmax(XZ))

1
2

The designed controller C(s) decreases the effect from
the friction δ and the reference input r to the control
input u and the state x in the plant P (s). Fig.3 shows
the block diagram of P (s) and C(s). From Fig.3, the

δ ++ - +

u

C(s)

P(s)

r

x

Fig. 3 Block diagram of the system

minimizing H∞ norm problem of the transfer function
matrix from δ, r to x, u is given by Eq.(7).∥∥∥∥[ I

C(s)

]
(I + P (s)C(s))−1[I P (s)]

∥∥∥∥
∞

< γ (7)

H∞ loop shaping controller which achieves the refer-
ence tracking performance and the friction compensa-
tion is designed by using the evaluation function Eq.(7).

3.2 Selection of Weight Functions

H∞ loop shaping controller which improves the con-
trolled performance is introduced by multiplying the
weight functions to back and forth of the open loop
transfer function. In this study, W (s) and the constant

matrix Q
1
2 are the weight functions shown in Fig.4(a).

The plant P (s) is extended by the weight functionsW (s)

and Q
1
2 . Then the controller C∞(s) is synthesized for

the extended system Ps(s) = Q
1
2P (s)W (s). Fig.4(b)

is the equivalent transformation of Fig.4(a). Final con-

troller C(s) = W (s)C∞(s)Q
1
2 is introduced by connect-

ing C∞(s) and the weight functions once again. In Fig.4,

δ
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Fig. 4 H∞ loop shaping method

the transfer function matrix from the external input
{r, δ} to evaluation output {zu, zx} is given by Eq.(8).[

zu
zx

]
=

[
Pzur(s) Pzuδ(s)
Pzxr(s) Pzxδ(s)

] [
r
δ

]
(8)

Pzur(s) = W−1(s)(1 + C(s)P (s))−1C(s)Q− 1
2

Pzuδ(s) = (1 + C(s)P (s))−1

Pzxr(s) = Q
1
2 (I + P (s)C(s))−1P (s)C(s)Q− 1

2

Pzxδ(s) = Q
1
2 (I + P (s)C(s))−1P (s)W (s)

Eq.(8) can be explained as follows. Pzur(s) is not

considered because of Q− 1
2 ≃ 0 if the value of Q

1
2 is

large. The control input is not influenced the distur-
bance by minimizing norm of Pzuδ(s). Pzxr(s) is the
closed loop transfer matrix. Pzxδ(s) is the disturbance
control characteristic, and the effect of the disturbance
is minimized by using the constant matrix Q

1
2 and the

dynamic weight function W (s). Thus the selection of

the weight function W (s) and Q
1
2 influences the con-

trol performance widely. W (s) is designed to satisfy the
reference tracking performance and the friction compen-
sation and Q

1
2 is selected to improve the plant response.

3.3 Selection of W (s)

From section 2.4, the ball screw system has the stick-
slip motion in near 10[rad/sec] and the static friction
in the low frequency region. Thus the gain of W (s) is
raised in the low frequency and near 10[rad/sec]. The

final controller is given by C(s) = W (s)C∞(s)Q
1
2 , so the

controller that has the reference tracking performance
is designed by adding the integrator to W (s). In the
result, W (s) is given by Eq.(9) to raise the gain in the
low frequency and close 10[rad/sec].

W (s) =
10s+ 10

0.01s+ 1
× 1

s
(9)

3.4 Selection of Q
1
2

The H∞ loop shaping controller is improved the plant
response by using the evaluation function of LQ con-
trol. Trial and error for H∞ weight function is not
clear compared with traditional LQ control synthesis.
Thus in this study, the constant weight Q

1
2 is selected

to simplified the trial and error for weight function. In



this ball screw system, the feedthrough term of the ex-
tended system is Dd = 0. Then the H∞ loop shap-
ing controller C∞(s) is solved by two Riccati equations

Eq.(10) and Eq.(11), where Ps(s) = Q
1
2P (s)W (s) =

{Ad, Bd, Cd, Dd}.

AT
d X +XAd −XBdB

T
d X + CT

d Cd = 0 (10)

AdZ + ZAT
d − ZCT

d CdZ +BdB
T
d = 0 (11)

From the solution of X and Z, the controller is given by
Eq.(12), Eq.(13).

ẋk(t) = (Ad +BdF +HCd)xk(t) +Hyk(t) (12)

uk(t) = Fxk(t) (13)

Where F = −BT
d X,H = γ2W−T

1 ZCT ,W1 = I+(XZ−
γ2I). From Eq.(12) and Eq(13), the H∞ loop shap-
ing controller C∞(s) can be considered as the output
feedback controller consisting of a state feedback and
observer. The block diagram of the closed loop system
is shown in Fig.5. The state feedback gain F in Eq.(12)
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Fig. 5 Block diagram of C∞(s)

and Eq.(13) is given F = −BT
d X, and X is the solution

of the Ricatti equation Eq.(10).
On the other hand, it is well known that the Ricatti

equation for Eq.(14) is given in Eq.(15), and the state
feedback gain is F = −BT

d X.

J =

∫ ∞

0

(x(t)TQx(t) + u(t)Tu(t))dt (14)

AT
d X +XAd −XBdB

T
d X +Q = 0 (15)

When zx(t) is represented zx(t) = Cdxd(t) = Q
1
2x(t), xd

is the state of Ps(s). The evaluation function of Eq.(15)
is equivalent to Eq.(16).

J =

∫ ∞

0

(x(t)TQx(t) + u(t)Tu(t))dt

=

∫ ∞

0

(zx(t)
T zx(t) + u(t)Tu(t))dt

=

∫ ∞

0

(xT
d C

T
d Cdxd(t) + u(t)Tu(t))dt (16)

Thus the Ricatti equation for Eq.(16) is equivalent to
Eq.(10), and F = −BT

d X of Eq.(13) is the state feed-
back gain using LQ control. The state feedback gain F
that minimizes the the evaluation function J is obtained.
The selection of the constant weight Q

1
2 for LQ control

is easier than selecting appropriate weighting function
for standard H∞ control synthesis framework. The con-
stant weight Q

1
2 is given in Eq.(17).

Q
1
2 =

[
4000 0
0 50

]
(17)

3.5 Characteristics of Disturbance Rejection

The characteristics of disturbance rejection and con-
troller are analyzed by the gain diagram to verify the
effectiveness of the weight functions. Fig.6 shows the
gain diagram from the friction δ to the table position
y. From Fig.6, the disturbance rejection is achieved in
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Fig. 6 Gain diagram from friction to output

the low frequency region and near 10[rad/sec]. This di-
agram shows the effectiveness of the proposed method.
The obtained controller C∞(s) is as follows.

C∞(s) =

[
2.7×103s3+2.9×107s2+2.2×1010s+5.6×1010

s4+1.9×104s3+1.0×108s2+1.4×1010s+3.5×1010

9.2×103s3+9.7×107s2+2.9×1010s+7.3×1010

s4+1.9×104s3+1.0×108s2+1.4×1010s+3.5×1010

]
(18)

The two dimensional controller is obtained by using the
balanced truncation method[9] for C∞(s).

C∞2(s) =

[
2.9×102s+2.0×106

s2+1.0×104s+1.2×106

9.5×102s+2.6×106

s2+1.0×104s+1.2×106

]
(19)

The finally obtained controller C(s) = W (s)C∞2(s)Q
1
2

is Eq.(20). The gain diagram of C(s) is shown in Fig.7.

C(s) =

[
C1(s)
C2(s)

]

=

 1.0×108s2+7.2×1010s+7.2×1010

5.0×10−2s4+5.5×102s3+5.9×104s2+9.7×105s

5.5×106s2+1.2×109s+1.2×109

5.0×10−2s4+5.5×102s3+5.9×104s2+9.7×105s

 (20)

As can be seen in Fig.7, the controller C(s) is expected
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Fig. 7 Gain diagram of C(s)

to have the reference tracking performance and the fric-
tion compensation because the gain of C(s) is risen in
the low frequency region and near 10[rad/sec].

4 Simulations and Experiments

4.1 Step Response

The step response of the ball screw system is verified
by simulations and experiments. The friction model
shown in section 2.3 is used for the nonlinear simula-
tions. The simulation and the experiment are conducted
in the following cases to verify the effectiveness of the
frequency shaping.



• Case 1 : Ŵ (s) = 10
s

(The same gain as Case 2 in the low frequency region)

• Case 2 : W (s) = 5s+10
0.01s+1 × 1

s

Ŵ (s) does not take account of the disturbance that
causes the stick-slip motion near 10[rad/sec]. The simu-
lation result of the table position[m] and the current in-
put[A] are shown in Fig.8 and Fig.9, respectively. From
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Fig.8, the step response in Case 1 follows the reference
eventually by the integrator. However the overshoot is
occurred by the friction. On the other hand, the step
response in Case 2 follows the reference without station-
ary error and overshoot. As can be seen in Fig.9, the
input is applied to reject the static friction at the rising
moment. Thus the design controller achieved reference
tracking performance and friction compensation. Then
the experiment is run in the same condition of the sim-
ulation. The table position[m] is shown in Fig.10, and
the control input[A] is shown in Fig.11.
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As can be seen in Fig.8 and Fig.10, there are some dif-
ference between the real friction and our friction model.
However the experiment result has the same character-
istics with the simulation. This mean that our friction
model has a certain accuracy. Thus the precise simu-
lation is achieved by getting the friction model used in
section 2.3. From Fig.10, the step response in Case 2
follows the reference without the stationary error and
the overshoot. As can be seen in Fig.11, the input is
given to reject the static friction at the rising moment.
The effectiveness of the proposed method is verified.

4.2 Ramp response

The ramp response of the ball screw system is verified
by simulations and the experiments as well as the previ-
ous section. The simulation and the experiment condi-
tions are the same as section 4.1. The simulation result
of the table position[m] and the current input[A] are
shown in Fig.12 and Fig.13, respectively. From Fig.12,
the stick-slip motion is observed in Case 1. However the
ramp response in Case 2 follows the reference without
the stick slip motion. As can be seen in Fig.13, the input
is given to reject the static friction at the rising moment.
Based on the simulation result, the experiment is con-
ducted in the same condition of the simulation. The
table position is shown in Fig.14, and the control input
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is shown in Fig.15. There are some difference between
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the real friction and friction model. However the ex-
periment result has the same characteristics with the
simulation. From Fig.14, the table position follows the
reference without the stick slip motion. As can be seen
in Fig.15, the input is given to reject the static fric-
tion at the rising moment. From the simulation and
the experiment result, the H∞ loop shaping controller
compensates the stick slip motion by using W (s)

5 Conclusion

In this study, the H∞ loop shaping controller, which
satisfies the reference tracking performance and the fric-
tion compensate, is designed for the ball screw sys-
tem. The static friction and the stick-slip motion
near 10[rad/sec] are compensated by frequency shap-
ing W (s). Even though the framework of the proposed

method is H∞ control, the other weight Q
1
2 is easily se-

lected, since the weight Q
1
2 is equivalent to the weight

for the traditional LQ control framework. The effec-
tiveness of the proposed method is illustrated by the
simulations and the experiments.
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