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1 Introduction

In this paper, Gain-Scheduling (GS) control via pa-
rameter dependent Lyapunov function for crane is syn-
thesized. A purpose of cranes system is to lift and carry
a load to assigned positions. Cranes are required to
transport the load fast, accurately and to reduce oscil-
lations. In previous research, a method to robust con-
trol of cranes to suppress effects by variation of the rope
length have been reported[1]. For improvement of cranes
efficiency, cranes should be operated in movement of the
load horizontal and vertical directions simultaneously. It
has been reported that decentralized control is effective
for cranes[2]. We have reported a method to synthe-
sis GS control via parameter dependent Lyapunov func-
tion in concept of treating complete dynamics[3]. The
crane model not to ignore velocity and acceleration of
the rope length in the dynamics has been derived. How-
ever, a mass of the load is not constant and included in
the dynamics. Variation of the mass of the load is not
considered. By using parameter dependent Lyapunov
function, a controller becomes less conservative synthe-
sis in comparison with adopting parameter independent
Lyapunov function[4]. However, there is Lyapunov ma-
trix derivative. For this problem, a estimation method
of Lyapunov matrix derivative has been reported[5].
In this paper, a GS controller via parameter depen-

dent Lyapunov function which guarantees variation of
the rope length, its velocity, acceleration and the mass
of the load is synthesized. All varying parameters in
the dynamics which is related to operating the crane
are taken into account. The rope length, its velocity
and acceleration are treated as time-varying parame-
ters. The mass of the load is different in every op-
eration, it is treated as uncertain but time-invariant
parameter. Time-varying parameters are assumed to
measurable, they are treated as scheduling parameters.
Linear Parameter Varying (LPV) system for scheduling
parameters is obtained. Robust stability with vertexes
of varying parameters is guaranteed. By using param-
eter dependent Lyapunov function, there are product
of scheduling parameters and derivative of Lyapunov
matrix. For these problem, descriptor representation,
Linear Fractional Transformation (LFT) and a estima-
tion method of Lyapunov matrix derivative are adopted.
The former problem of parameter dependent Lyapunov
function can be solved by adopting descriptor represen-
tation. We show that adopting descriptor representation
and LFT, the controller performance is improved from a
viewpoint of evaluated function. By several simulations,
it is shown that the controller is effective.

2 Controlled plant

A schematic diagram of the crane is shown in Fig. 1.
A position of the trolley ξ [m], a swing angle of the load
ϕ [rad] and the rope length lp [m] are measurable. In
addition, it is assumed that velocity and acceleration of
the rope length can be obtained. The controlled output

is the horizontal position of the load y [m](y = ξ −
l sinϕ). The control input is a current of a jib motor
Ij [A]. The mass of the load is mp. The mass of the
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Figure 1 Crane model

trolley is mj , the jib motor equivalent moment of inertia
is Jψ, the ratio of the jib motor gear is Kg,j , the radius
of the jib motor gear is rj,p, the torque constant of the
jib motor is Kt and the gravitational acceleration is g.
In this paper, the followings are assumed. i) The rope
is rigid rod without the mass. ii) The load is a material
point. iii) The load moves in a plane consist of the
tower and the boom. iv) The friction between the trolley
and the boom is ignored. Let generalized coordinate be
q(t) = [ξ(t) ϕ(t)]T. ϕ and its velocity are assumed as

small enough. sinϕ ≃ ϕ, cosϕ ≃ 1, ϕ̇2 ≃ 0. Let mj be

mt +
JψK

2
g,j

r2j,p
. The mathematical model is obtained as

Eq.(1)

Eq̈ + F q̇ +Gq = HIj (1)

E =

[
mp +mj −mplp

1 −lp

]
, F =

[
0 −2mp l̇p
0 −2l̇p

]
G =

[
0 −mp l̈p
0 −g

]
, H =

[
kt
0

]
Let state variable be xj =

[
qT q̇T

]T
, output be y and

input be u = Ij . Then, the state space representation
of the crane is obtained as Eq.(2) and Eq.(3).

ẋj = Ajxj +Bju (2)

y = Cjxj (3)

Aj =

[
I 0
0 E

]−1 [
0 I

−G −F

]

=


0 0 1 0
0 0 0 1

0
mp(l̈p−g)

mj
0 0

0
mp l̈p−(mp+mj)g

mj lp
0

2l̇p
lp





Bj =

[
I 0
0 E

]−1 [
0
H

]
=


0
0
Kt
mj
Kt
mj lp


Cj = [1 −lp 0 0]

3 Controller synthesis

Scheduling parameters are not only the rope length
lp, but also the velocity l̇p and the acceleration l̈p. The
stability of the closed system should be guaranteed theo-
retically for variation of the rope length, its the velocity
and acceleration. Operation time can be shorten be-
cause it is possible to move the trolley and to hoist the
rope at same time. An important purpose of controlling
crane system is that the load follows references without
error. The integral of the error xe is added to the state
variable xj to make the controlled output y follows to a
reference r. The augmented system and state variable
x(t) are assigned as Eq.(4), (5).

x(t) =
[
xe(t)

T q(t)T q̇(t)T
]T

(4)

xe =

∫ t

0

e(τ)dτ, e = r − y

ẋ = Aex+Beu (5)

Ae =

[
0 −Cp
0 Ap

]
, Be =

[
0
Bp

]

3.1 Matrices Transformation

Stability conditions with state space representation
are obtained as Eq.(6), (7).

X(θ) = X(θ)T > 0 (6)

He{Ae(θ)X(θ) +Be(θ)Y (θ)} − Ẋ(θ) < 0 (7)

Where, state feedback controller u = K(θ)x and feed-
back gain K(θ) = Y (θ)X(θ)−1. The coefficient matrices
Ae and Be include scheduling parameters. When GS
control system is synthesized with a framework of the
state space representation of the crane, there are prod-
ucts of scheduling parameters in the coefficient matrices
and variable matrix Y (θ), scheduling parameters in the
coefficient matrices and Lyapunov matrix X(θ). Linear
Matrix Inequality (LMI) conditions for deriving GS con-
troller can not be solved. Furthermore, the matrix Ae
includes l and 1

l . If a method in framework of polytopic
is adopted for Eq.(5), then synthesized controller be-
comes conservative. In this paper, descriptor represen-
tation is adopted. Coefficient matrix Ae which includes
an affine system for l, l̇, l̈ and coefficient matrixBe which
does not include scheduling parameters are obtained.
The parameter box Eq.(8) is defined by vertexes which
consist of upper and lower bounds of the varying pa-
rameters. The scheduling parameters are θ = [lp, l̇p, l̈p]

and its derivatives are θ̇. The time-invariant parameter
is mp.

Θ = {[η | θ] = [θ0 | θ1, θ2, θ3, θ4] : θi ∈ {θi, θi}} (8)

θ0 = mp, θ1 = l, θ2 = l̇, θ3 = l̈, θ4 =
...
l , (i = 0, ..., 4)

Let descriptor variable be xd = [xT q̈T]T and matrix J
be [1 − θ1]. Eq.(9) is obtained from Eq.(2).

Edẋd = Ad(θ)xd +Bdu (9)

Ed = block diag(I, I, 1, 0)

Ad =

 0 −J 0 0
0 0 I 0
0 0 0 I
0 −G −F −E

 , Bd =

 0
0
0
H


Where, I is the unit matrix which has the appropri-
ate dimension. From Eq.(9), matrix H includes only
constant. The coefficient matrix Ad includes only affine
terms. If Eq.(9) includes scheduling parameters between
first row and fifth row, then flexibility of the synthesized
controller is fall. LFT is adopted into Eq.(9) for remove
scheduling parameters between first row and fifth row.
Let new descriptor variable be xlf = [xT

d zTδ ]
T.

Elf ẋlf = Alf (θ)xlf +Blfu (10)

Alf (θ) = Alf0 +
3∑
i=1

θiAlfi (11)

=

[
An Bδ∆
Cδ −I +Dδ∆

]

=

[
An11 An12 Bδ1∆
An21 An22 Bδ2∆
Cδ1 Cδ2 − I +Dδ∆

]

Elf =

[
Ed 0
0 0

]
, Blf =

[
Bd
0

]

An =



0 −1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 −(θ0 +mj) θ0θ1
0 0 g 0 0 −1 θ1



Bδ =



1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 θ0 θ0
0 1 0


Cδ =

[
0 0 1 0 0 0 0
0 0 0 0 2 0 0
0 0 1 0 0 0 0

]

Dδ =

[
0 0 0
0 0 0
0 0 0

]
,∆ = diag(θ1, θ2, θ3)

Where, zδ is virtual input. From Eq.(10), the coefficient
matrix Alf includes only affine terms and does not in-
clude scheduling parameters between first row and fifth
row.

3.2 Stability conditions

The stability conditions of descriptor system which is
represented by Eq.(10) is related to LQ control specifi-
cation for the closed loop system assigned by state feed-
back controller u = Klf (θ)xlf . Considering structure of
the matrix Elf , candidates of Lyapunov matrix Xlf (θ)



and variable matrix Ylf (θ) are restricted as Eq.(12).

Xlf (θ) =

[
X(θ) 0 0

X2.1(θ) X2.2(θ) X2.3(θ)
X3.1(θ) X3.2(θ) X3.3(θ)

]
(12)

Elf Ẋl(θ) =

Ẋ(θ) 0 0
0 0 0
0 0 0

 , Ylf (θ) = [Y (θ) 0 0]

[Theorem][6] The closed loop system with a plant
Eq.(9) and state feedback is stable, if X(θ), Xlf (θ) and
Ylf (θ) exist satisfying Eq.(13) and (14).

X(θ) > 0 (13)

He{Alf (θ)Xlf (θ) +BlfYlf (θ)} − Elf Ẋlf (θ) < 0 (14)

Eq.(15) is obtained when [I Bδ∆(I −Dδ∆)−1] and its
transportation are multiplied to Eq.(14) from both sides.

He {Ae(θ)X(θ) +BeY (θ)} − Ẋ(θ) < 0 (15)

X(θ) can be seen as Lyapunov matrix for the dimension
of the state space representation. In Eq.(14), there are
products of scheduling parameters and Lyapunov ma-
trix Xlf (θ). Xlf (θ) is assigned as form of Eq.(16) and
restricted as Eq.(17). The Eq.(14) become multi-affine
for θ. The stability is guaranteed by solving finite LMI
conditions at vertexes of the scheduling parameter θ and
derivative θ̇.

Xlf (θ) = Xlf0 +
3∑
i=1

θiXlfi (16)

Xlfi =



X1.1−i . . . X1.5−i 0 0
...

X5.1−i . . . X5.5−i 0 0
X6.1−i . . . X6.10−i

...
X10.1−i . . . X10.10−i


(i = 1, ..., 3)

θ1[Xk.1−1 . . . Xk.10−1] = 0 (k = 7, 8) (17)

θ2[X9.1−2 . . . X9.10−2] = 0

θ3[X10.1−3 . . . X10.10−3] = 0

3.3 LQ control specification

For Eq.(9), an evaluated function Jz is given by
Eq.(18).

Jz =

∫ ∞

0

(xe
TQxe + uTRu)dt (18)

Where, Q ≥ 0 and R > 0. Matrices Alf (θ), Xlf (θ),

X(θ), Ylf (θ), Y (θ) and Ẋlf (θ) are affine to the schedul-
ing parameter and its derivative. Matrices can be rep-
resented by parameter box Θi.

Θ1=(θ0, θ1, θ2, θ3, θ4),Θ2=(θ0, θ1, θ2, θ3, θ4), ...

...Θ31=(θ0, θ1, θ2, θ3, θ4),Θ32=(θ0, θ1, θ2, θ3, θ4)

For stabilizing the LPV system Eq.(10), LMI conditions
which derive GS controller minimize evaluated function

Jz from w to z can be obtained as Eq.(19)-(22).

minimize : γ

subject to

X(Θi) > 0 (19)He{Alf (Θi)Xlf (Θi) +BlfYlf (Θi)} − Elf Ẋlf (Θi)

R
1
2Ylf (Θi)

Q
1
2

lfXlf (Θi)

Ylf
T(Θi)R

1
2T Xlf(Θi)Q

1
2

lf

−Ilf1 0
0 −Ilf2

 < 0 (20)

[
W Ilf3
Ilf3 X(Θi)

]
> 0 (21)

Trace(W ) < γ2 (22)

(i = 1, ..., 32)

Where, Ilf1, Ilf2, Ilf3 are unit matrices which have the
appropriate dimensions. X(θ) and Y (θ) are obtained by
X(Θi), Y (Θi) that satisfy Eq.(19)-(22). The GS con-
troller K(θ) is assigned as K(θ) = [Y (θ) X(θ)−1].

3.4 Estimation of derivative

In Eq.(19)-(22), GS controller via parameter depen-
dent Lyapunov function is synthesized. However, there
is a Lyapunov matrix derivative. The controller guaran-
tees robustness of variation of

...
l p which does not include

in dynamics. A estimation method of Lyapunov matrix
derivative is adopted[5]. Matrix polytopes are define as
Eq.(23).

Co[α](M1, ...,Mq)

:=

[
q∑
i=1

αiMi : αi ≥ 0,

q∑
i=1

αi = 1

]
(23)

Let upper bound of Lyapunov matrix X0 be Eq.(24).

For vertexes of α̇i < 0, 0 ≤ Xi ≤ X0, ∀i ∈ ID (24)

Where, ID is set of indexes of α̇i < 0. Ẋ is guaranteed
by an upper bound of Lyapunov function as Eq.(25).

−Ẋ =
∑
i∈II

(−α̇iXi) +
∑
i∈ID

(−α̇Xi)

≤ µ0X0 (25)

Where, µ0 is max
∑
i∈ID(−α̇). αi(i = 1, ..., 8) are de-

rived as Eq.(26).

α1 =
(θ1 − θ1)(θ2 − θ2)(θ3 − θ3)

(θ1 − θ1)(θ2 − θ2)(θ3 − θ3)
(26)

α2 =
(θ1 − θ1)(θ2 − θ2)(θ3 − θ3)

(θ1 − θ1)(θ2 − θ2)(θ3 − θ3)

...

α8 =
(θ1 − θ1)(θ2 − θ2)(θ3 − θ3)

(θ1 − θ1)(θ2 − θ2)(θ3 − θ3)

Ẋlf in Eq.(20) is shown as Eq.(12). We should derive
upper bound of X. LMI conditions which include the



estimation method of Lyapunov matrix derivative are
shown as Eq.(27)-(31).

minimize : γ

subject to

X0 −X(Θi) > 0 (27)

X(Θi) > 0 (28)He{Alf (Θi)Xlf (Θi) +BlfYlf (Θi)}+ µ0X0

R
1
2Ylf (Θi)

Q
1
2

lfXlf (Θi)

Ylf
T(Θi)R

1
2T Xlf (Θi)Q

1
2

lf

−Ilf1 0
0 −Ilf2

 < 0 (29)

[
W Ilf3
Ilf3 X(Θi)

]
> 0 (30)

Trace(W ) < γ2 (31)

(i = 1, ..., 16)

4 Simulations

Upper and lower bounds of the varying parameters
are assigned as θ0 ∈ [0.147, 1.470], θ1 ∈ [0.1, 0.7],
θ2 ∈ [−0.23, 0.23], θ3 ∈ [−0.292, 0.292], θ4 ∈
[−1.3745, 1.3745]. Results of controllers are shown by
several simulations. The reference is assigned 1.0 [m]
for the horizontal position y of the load with hoisting
movement. The reference is assigned 1.0 [m] for the
horizontal position y of the load with hoisting move-
ment. Results of input and output considering varia-
tion of the mass of the load and considering fixed mass
(mp = 0.735 [kg]) are shown in Fig. 2 and 3. These con-
trollers are not adopted estimation of derivative and are
assigned the weight matrix as Q = [1, 1, 1, 1, 1], R = 1.
From Fig. 2 and 3, the oscillation is eliminated by con-
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Figure 2 output: consid-
ering mass mp = 1.47
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Figure 3 input: consid-
ering mass, mp = 1.47

sidering variation of the mass of the load. Results of
input and output adopting descriptor representation,
LFT and adopting only descriptor representation are
shown in Fig. 4 and 5. The Fig. 4 and 5 are not
adopted estimation of derivative and are assigned the
weight matrix as Q = [1, 1, 1, 1, 1], R = 10, the mass
of the load as 0.147. γ achieved by adopting LFT and
descriptor representation is 6.87, only descriptor repre-
sentation is 7.23. From Fig. 5 and γ, the controller
adopting LFT and descriptor representation can sup-
press the control input and make upper bound of eval-
uated function lower than adopting only descriptor rep-
resentation. Results of input and output adopting es-
timation of derivative and not adopting estimation of
derivative are shown in Fig. 6 and 7. The Fig. 6 and 7
are not considering l̇p, l̈p and are assigned the weight ma-
trix as Q = [10, 1, 1, 10, 1], R = 10, the mass of the load
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Figure 4 output: LFT
and Descriptor
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Figure 5 input: LFT and
Descriptor

as 0.147. γ achieved by adopting estimation of deriva-
tive is 10.9, not adopting the method is 11.6. From
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Adopting estimate derivative
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Figure 6 output: estima-
tion of derivative θ1
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Figure 7 input: estima-
tion of derivative θ1

Fig. 7 and γ, the controller adopting estimation of Lya-
punov matrix derivative can suppress the control input
and make upper bound of evaluated function lower than
not adopting.

5 Conclusion

This paper synthesizes Gain-Scheduling control for
crane which guarantees variation of the mass of the
load, rope length, its velocity and acceleration. The
controller is synthesized with parameter dependent Lya-
punov function. For improve performance of controller,
descriptor representation, Linear Fractional Transfor-
mation and estimation of Lyapunov matrix derivative
are adopted. By several simulations, it is shown that
these methods are effective for the crane.
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